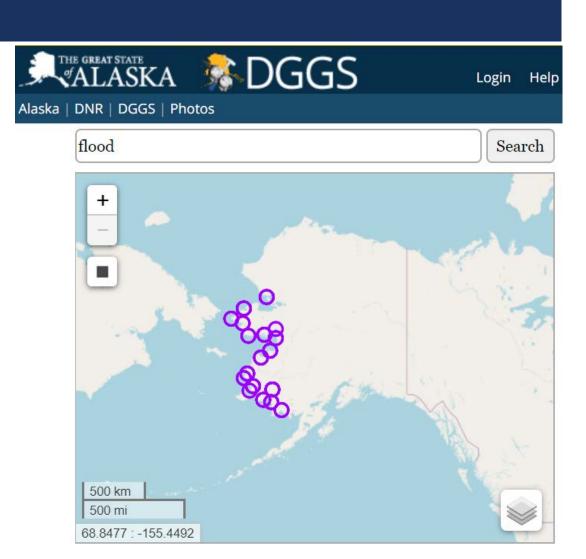
Coastal flood impact assessments for Alaska communities

Presented by Richard Buzard

Collaborators:

Jacquelyn Overbeck, Jonathan Chriest, Karen Endres, and Edward Plumb

THE PROBLEM


Storm surge flooding affects every coastal community in western Alaska.

The history of flooding in a community is difficult to follow

- How many storms have hit?
- How high have floods reached?

Knowing the flood history helps inform:

- Forecasters
- Mitigation planners

WHERE CAN I FIND FLOOD INFORMATION?

- Flood resources are scattered
- There is no consistent, full list of floods for each community
- So, we started putting together a list!

Source	Description

USACE (2017) USACE (2007)

USACE (2000)

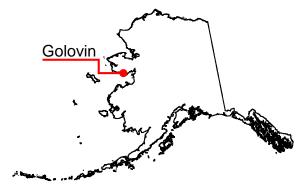
Wise *et al.* (1981)

Many other sources

City of Golovin (2015) Local HMP Update

City of Golovin (2008) Local HMP

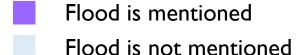
Local Flood Report (online)

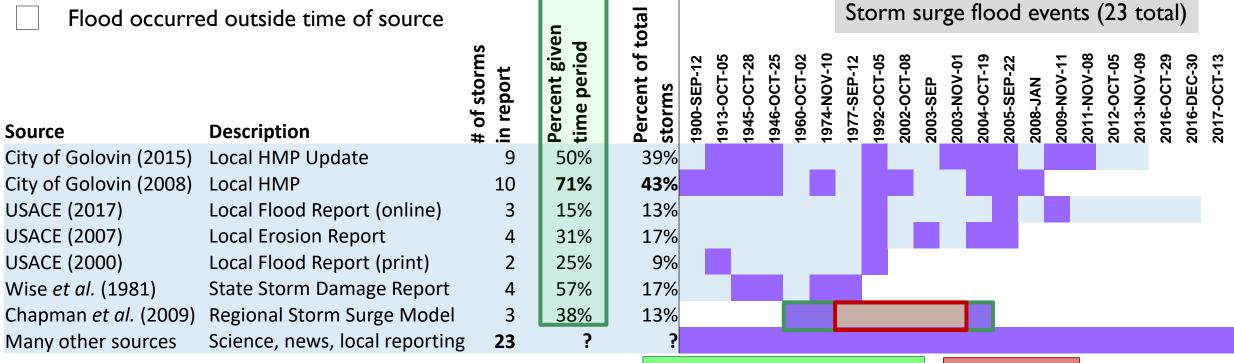

Local Erosion Report

Local Flood Report (print)

State Storm Damage Report

Chapman et al. (2009) Regional Storm Surge Model


Science, news, local reporting



EXAMPLE: STORM HISTORY OF GOLOVIN

Hazard Mitigation Plan had the most information

No single source is complete, and everything becomes dated, but together they make a long history of storms!

Top 10 Storm surge model caught three big storms

But missed five others

ESTIMATING STORM HEIGHTS (EXAMPLE: NOVEMBER 2013)

- A series of four storms drove water into Norton Sound
- Standing water rose as high as Antone Street,
 but no significant overtopping occurred

Antone Street



Photo sent from Steve Ivanoff

300 mb windspeed m/s and 500 mb Hght 00Z10NOV2013

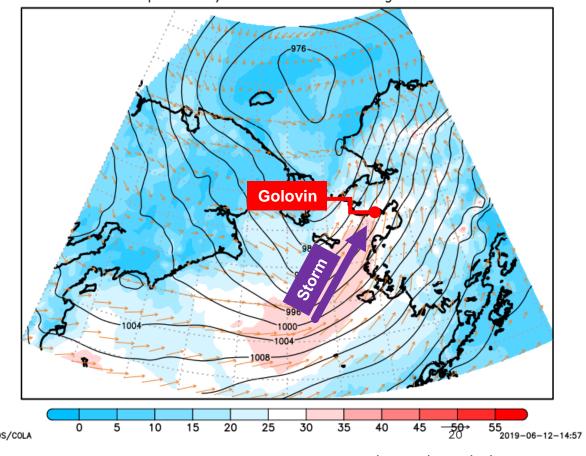
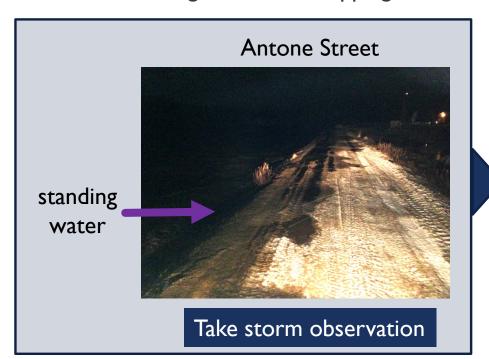
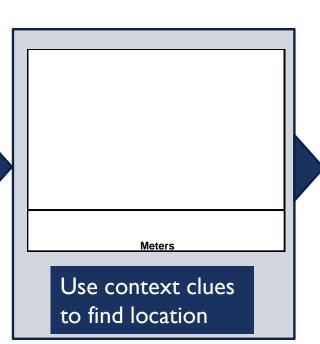
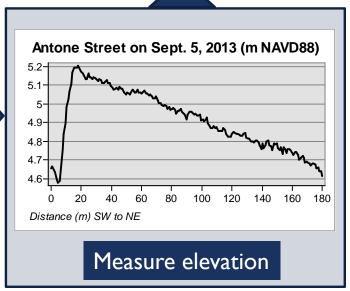
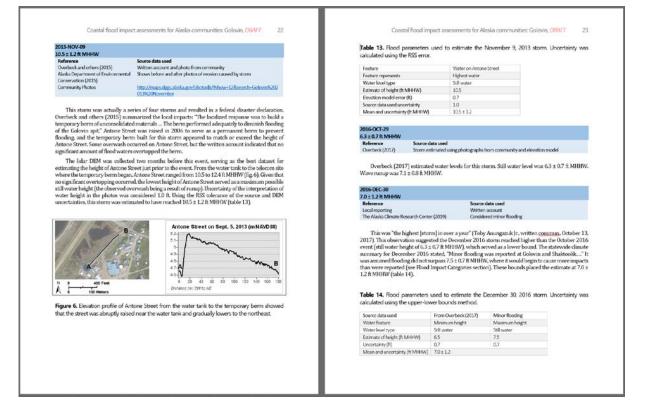




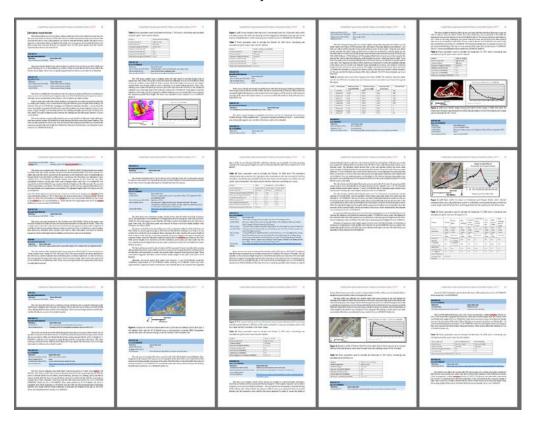
Figure by Emily Niebuhr, NOAA

ESTIMATING STORM HEIGHTS (EXAMPLE: NOVEMBER 2013)


- A series of four storms drove water into Norton Sound
- Standing water rose as high as Antone Street,
 but no significant overtopping occurred


Feature	Water on Antone Street
Feature represents	Highest water
Water level type	Still water
Estimate of height (ft MHHW)	10.5
Elevation model error (ft)	0.7
Source data used uncertainty	1.0
Mean and uncertainty (ft MHHW)	10.5 ± 1.2

Estimate storm height



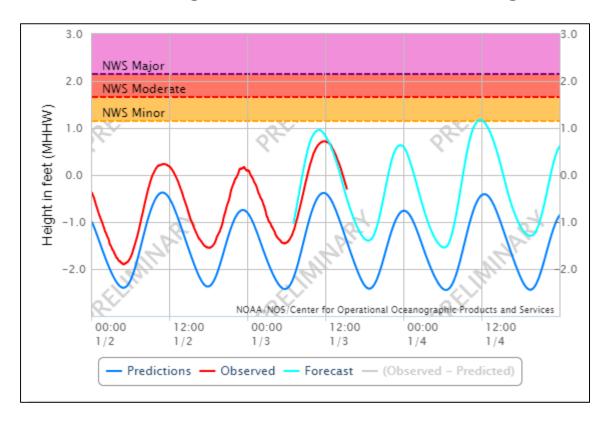
THOROUGH DOCUMENTATION

Report of Investigations with storm history, height, and estimation method

Every storm!

LIST OF STORMS

Rank	Storm	Elevation (ft MHHW)	Vertical Uncertainty (ft)
I	1913-OCT-05	12	2
2	1974-NOV-10	П	3
3	2013-NOV-09	10.5	1.2
4	1992-OCT-05	10.0	0.9
5	1945-OCT-28	9.1	1.4
6	2011-NOV-08	9	2
7	2004-OCT-19	8.9	1.1
8	2005-SEP-22	8.8	0.3
9	2016-DEC-30	7.0	1.2
10	2019-FEB-11	6.5	1.2
11	2016-OCT-29	6.3	0.7
12	1977-SEP-12	6	2
13	2017-OCT-13	5.1	0.7
14	2012-OCT-05	4.2	1.3


Not enough
information
1900-SEP-12
1946-OCT-25
1960-OCT-02
2002-OCT-08
2003-SEP
2003-NOV-01
2008-JAN
2009-NOV-11

Great!

But what does it mean?

COMMUNICATING FLOOD RISK

Flood Categories are used to communicate general impacts expected by incoming storms

MAJOR: Extensive inundation of structures and roads. Significant evacuations of people and/or transfer of property to higher elevations.

MODERATE: Some inundation of structures and roads near stream. Some evacuations of people and/or transfer of property to higher elevations.

MINOR: Minimal or no property damage, but possibly some public threat.

From NWS website:

https://w1.weather.gov/glossary/index.php?word=Flood+Categories

ILLUSTRATING FLOOD CATEGORIES

Flood categories are based on the height water would have to reach to impact structures and society

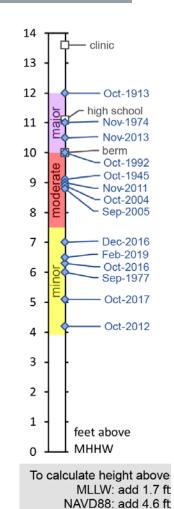


Table of infrastructure height

	Elevation Feature	Elevation (ft MHHW)
	*Clinic first floor	13.6
	Dexter Roadhouse beach side	13
	Highest recorded storm (still water)	12
Major	*Recommended building height	12.0
	*High school front door sill	11.1
	Drinking water	10.5
	Several buildings	10.5
	Fuel tanks	10.1
	Major	10
<u> </u>	Lowest residences	8.8
Mod	Roads in town	7.5
_	Moderate	7.5
/linor	Lowest building	7.0
	Beach property	3.9
2	Minor	3.9

Table of storms

Storm	Elevation (ft MHHW)	Vertical Uncertainty (ft)
1913-OCT-05	12	2
1974-NOV-10	11	3
2013-NOV-09	10.5	1.2
1992-OCT-05	10.0	0.9
1945-OCT-28	9.1	1.4
2011-NOV-08	9	2
2004-OCT-19	8.9	1.1
2005-SEP-22	8.8	0.3
2016-DEC-30	7.0	1.2
2019-FEB-11	6.5	1.2
2016-OCT-29	6.3	0.7
1977-SEP-12	6	2
2017-OCT-13	5.1	0.7
2012-OCT-05	4.2	1.3

Table of infrastructure height

	Elevation Feature	Elevation (ft MHHW)
Major	*Clinic first floor	13.6
	Dexter Roadhouse beach side	13
	Highest recorded storm (still water)	12
	*Recommended building height	12.0
	*High school front door sill	11.1
	Drinking water	10.5
	Several buildings	10.5
	Fuel tanks	10.1
	Major	10
Ţ.	Lowest residences	8.8
Mod.	Roads in town	7.5
_	Moderate	7.5
_	Lowest building	7.0
Minor	Beach property	3.9
2	Minor	3.9

Map of Flood Categories

DRAFT Coastal Flood Impact Golovin, Alaska

REPORT OF INVESTIGATIONS 2020-X Buzard and others, 2020 SHEET GOLOVIN

163°2'30"W

STATE OF ALASKA
DEPARTMENT OF NATURAL RESOURCES
DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

The State of Alaska makes no expressed or implied warranties (including warranties for merchantability and fitness) with respect to the character, functions, or capabilities of the electronic data or products or their appropriateness for any user's purposes. In no event will the State of Alaska be liable for any incidental, indirect, special, consequential, or other damages suffered by the user or any other person or entity whether from the use of the electronic services or products or any failure thereof or otherwise. In no event will the State of Alaska's liability to the Requestor or anyone else exceed the fee paid for the electronic service or product. website: dggs.alaska.gov

Major Flooding is defined to have extensive inundation of structures and roads. Significant evacuations of people and/or transfer of property to higher elevations are necessary.

Moderate Flooding is defined to have some inundation of structures and roads near the water. Some evacuations of people and/or transfer of property to higher elevations may be necessary.

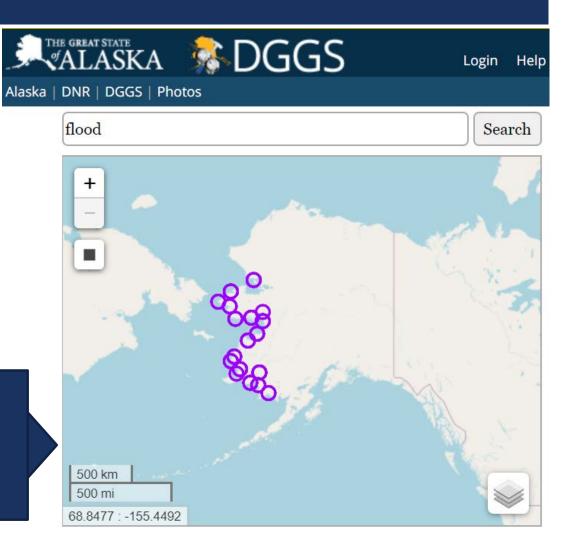
Minor Flooding is defined to have minimal or no property damage, but possibly some public threat.

This work is a part of the Digital Coast Fellowship project: Bringing Alaska to the Digital Coast. The analysis was paid for by the National Oceanic and Atmospheric Administration Office for Coastal Management, and the State of Alaska.

SOLVING THE PROBLEM

With this resource, you can:

- Quickly see the history of storms in a table
- Read about the **storm impacts** in a document
- See how forecasted storms might impact the community in a map


This has only been completed for Golovin and Hooper Bay.

We are working on more locations, but it takes a lot of time to get it right!

You can see pictures of storm impacts for many communities at the DGGS Photo Database:

maps.dggs.alaska.gov/photodb

Search "flood" and explore!

BONUS SLIDES

HOW DID THE USACE MODEL COMPARE TO OBSERVATIONS?

Top 10 surge events between 1954 and 2004 (Chapman et al. 2009)

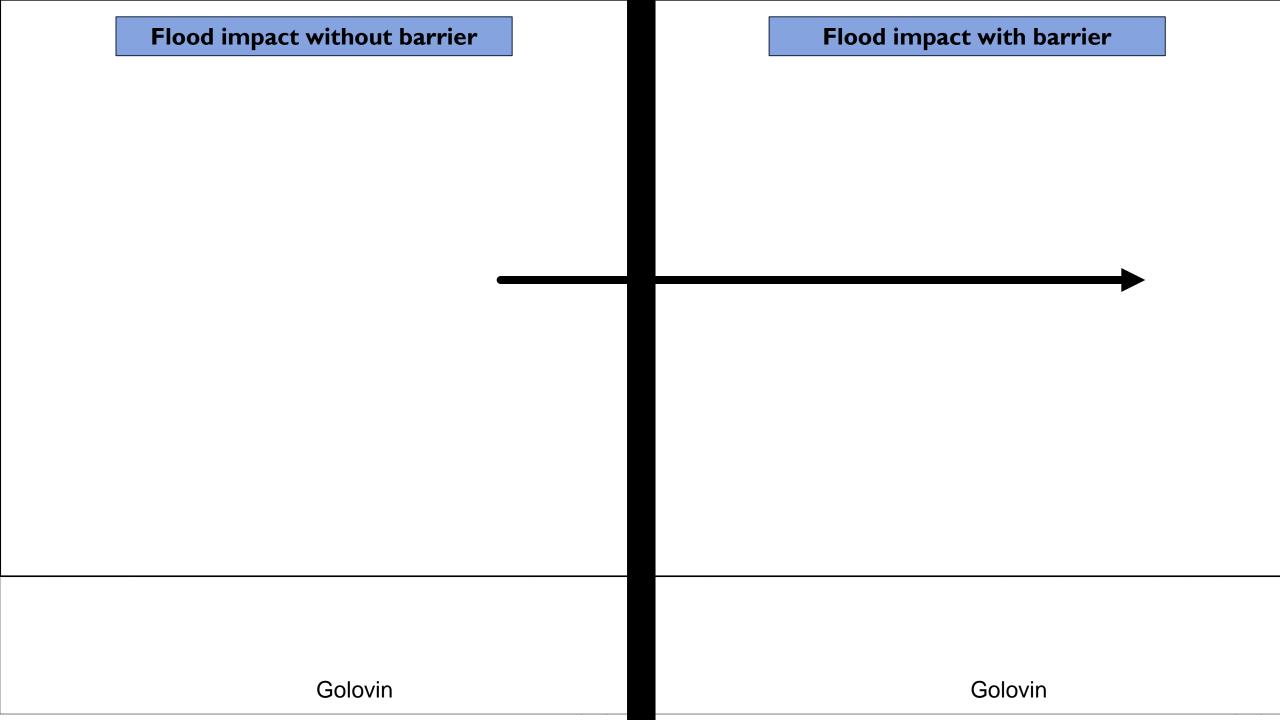
Rank	Starting Date	Maximum Surge (ft MLLW)
	I 1960-OCT-01	13.14
	2 1974-Nov-10	12.74
	3 1970-NOV-26	10.32
	4 1978-NOV-26	10.05
	5 2004-OCT-15	10.02
	6 1966-NOV-14	9.96
	7 1996-OCT-25	9.33
	8 1975-AUG-25	8.74
	9 1965-NOV-12	8.15
	10 1985-NOV-06	8.12

Mentioned in other sources, no further details

Estimated: 10.6 ± 1.1 ft MLLW

Not mentioned in any sources

		Elevation	Vertical
Rank	Storm		
_	1010 00-0-	(ft MLLW)	Uncertainty (ft)
I	1913-OCT-05	13.7	2
2	1974-NOV-10	12.7	3
3	2013-NOV-09	12.2	1.2
4	1992-OCT-05	11.7	0.9
5	1945-OCT-28	10.8	I. 4
6	2011-NOV-08	10.7	2
7	2004-OCT-19	10.6	1.1
8	2005-SEP-22	10.5	0.3
9	2016-DEC-30	8.7	1.2
10	2019-FEB-11	8.2	1.2
11	2016-OCT-29	8	0.7
12	1977-SEP-12	7.7	2
13	2017-OCT-13	6.8	0.7
14	2012-OCT-05	5.9	1.3
	1900-SEP-12	-	-
	1946-OCT-25	-	-
	1960-OCT-02	-	-
	2002-OCT-08	-	-
	2003-SEP	-	-
	2003-NOV-01	-	-
	2008-JAN	-	-
	2009-NOV-11	-	-


Using Forecast Tools

The community can build earthen dams to prevent flooding

Golovin, Alaska

